# NOT RUN {
## Declare empty list to be updated (in the event multiple IV like
## specifications are provided
sSet <- list()
## Declare MTR formulas
formula1 = ~ 1 + u
formula0 = ~ 1 + u
## Construct object that separates out non-spline components of MTR
## formulas from the spline components. The MTR functions are
## obtained from this object by the function 'genSSet'.
splinesList = list(removeSplines(formula0), removeSplines(formula1))
## Construct MTR polynomials
polynomials0 <- polyparse(formula = formula0,
data = dtm,
uname = u,
as.function = FALSE)
polynomials1 <- polyparse(formula = formula0,
data = dtm,
uname = u,
as.function = FALSE)
## Generate propensity score model
propensityObj <- propensity(formula = d ~ z,
data = dtm,
link = "linear")
## Generate IV estimates
ivEstimates <- ivEstimate(formula = ey ~ d | z,
data = dtm,
components = l(intercept, d),
treat = d,
list = FALSE)
## Generate target gamma moments
targetGamma <- genTarget(treat = "d",
m0 = ~ 1 + u,
m1 = ~ 1 + u,
uname = u,
target = "atu",
data = dtm,
splinesobj = splinesList,
pmodobj = propensityObj,
pm0 = polynomials0,
pm1 = polynomials1,
point = FALSE)
## Construct S-set. which contains the coefficients and weights
## corresponding to various IV-like estimands
sSet <- genSSet(data = dtm,
sset = sSet,
sest = ivEstimates,
splinesobj = splinesList,
pmodobj = propensityObj$phat,
pm0 = polynomials0,
pm1 = polynomials1,
ncomponents = 2,
scount = 1,
yvar = "ey",
dvar = "d",
means = TRUE)
## Define additional upper- and lower-bound constraints for the LP
## problem
A <- matrix(0, nrow = 22, ncol = 4)
A <- cbind(A, rbind(cbind(1, seq(0, 1, 0.1)),
matrix(0, nrow = 11, ncol = 2)))
A <- cbind(A, rbind(matrix(0, nrow = 11, ncol = 2),
cbind(1, seq(0, 1, 0.1))))
sense <- c(rep(">", 11), rep("<", 11))
rhs <- c(rep(0.2, 11), rep(0.8, 11))
## Construct LP object to be interpreted and solved by lpSolveAPI
lpObject <- lpSetup(sset = sSet$sset,
mbA = A,
mbs = sense,
mbrhs = rhs,
lpsolver = "lpSolveAPI")
## Estimate the bounds
bound(g0 = targetGamma$gstar0,
g1 = targetGamma$gstar1,
sset = sSet$sset,
lpobj = lpObject,
obseq.factor = 1,
lpsolver = "lpSolveAPI")
# }
Run the code above in your browser using DataLab