# NOT RUN {
#==============================================
# jSDM_binomial()
# Example with simulated data
#==============================================
#=================
#== Load libraries
library(jSDM)
#==================
#== Data simulation
#= Number of sites
nsite <- 200
#= Set seed for repeatability
seed <- 1234
#= Number of visits associated to each site
set.seed(seed)
visits <- rpois(nsite,3)
visits[visits==0] <- 1
#= Ecological process (suitability)
set.seed(seed)
x1 <- rnorm(nsite,0,1)
set.seed(2*seed)
x2 <- rnorm(nsite,0,1)
X <- cbind(rep(1,nsite),x1,x2)
beta.target <- c(-1,1,-1)
logit.theta <- X %*% beta.target
theta <- inv_logit(logit.theta)
set.seed(seed)
Y <- rbinom(nsite,visits,theta)
#= Data-sets
data.obs <- data.frame(Y,visits,x1,x2)
#==================================
#== Site-occupancy model
mod_jSDM_binomial <- jSDM_binomial(presences=data.obs$Y,
trials=data.obs$visits,
suitability=~x1+x2,
data=data.obs,
burnin=1000, mcmc=1000, thin=1,
beta_start=0,
mubeta=0, Vbeta=1.0E6,
seed=1234, ropt=0.44, verbose=1)
#==========
#== Outputs
#= Parameter estimates
summary(mod_jSDM_binomial$mcmc)
pdf(file=file.path(tempdir(), "Posteriors_jSDM_binomial.pdf"))
plot(mod_jSDM_binomial$mcmc)
dev.off()
#== glm resolution to compare
mod_glm <- glm(cbind(Y,visits-Y)~x1+x2,family="binomial",data=data.obs)
summary(mod_glm)
#= Predictions
summary(mod_jSDM_binomial$theta_latent)
pdf(file=file.path(tempdir(), "Pred-Init.pdf"))
plot(theta, mod_jSDM_binomial$theta_latent)
abline(a=0 ,b=1, col="red")
dev.off()
# }
Run the code above in your browser using DataLab