# NOT RUN {
# frogs data
data(frogs, package="jSDM")
# Arranging data
PA_frogs <- frogs[,4:12]
# Normalized continuous variables
Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3]))
colnames(Env_frogs) <- colnames(frogs[,1:3])
# Parameter inference
# Increase the number of iterations to reach MCMC convergence
mod_jSDM_block_frogs <- jSDM::jSDM_probit_block(
# Response variable
presence_site_sp = as.matrix(PA_frogs),
# Explanatory variables
site_suitability = ~.,
site_data = as.data.frame(Env_frogs), n_latent=2,
# Chains
burnin=1000, mcmc=1000, thin=1,
# Starting values
alpha_start=0, beta_start=0,
lambda_start=0, W_start=0,
V_alpha_start=1,
# Priors
shape=0.5, rate=0.0005,
mu_beta=0, V_beta=1.0E6,
mu_lambda=0, V_lambda=10,
# Various
seed=1234, verbose=1)
# Select site and species for predictions
## 30 sites
Id_sites <- sample.int(nrow(PA_frogs), 30)
## 5 species
Id_species <- sample(colnames(PA_frogs), 5)
# Predictions
theta_pred <- jSDM::predict.jSDM(mod_jSDM_block_frogs,
Id_species=Id_species, Id_sites=Id_sites, type="mean")
hist(theta_pred, main="Predicted theta with simulated covariates")
# }
Run the code above in your browser using DataLab