library(jSDM)
# frogs data
data(frogs, package="jSDM")
# Arranging data
PA_frogs <- frogs[,4:12]
# Normalized continuous variables
Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],
scale(frogs[,3]))
colnames(Env_frogs) <- colnames(frogs[,1:3])
Env_frogs <- as.data.frame(Env_frogs)
# Parameter inference
# Increase the number of iterations to reach MCMC convergence
mod <- jSDM_binomial_probit(# Response variable
presence_data=PA_frogs,
# Explanatory variables
site_formula = ~.,
site_data = Env_frogs,
n_latent=0,
site_effect="random",
# Chains
burnin=100,
mcmc=100,
thin=1,
# Starting values
alpha_start=0,
beta_start=0,
V_alpha=1,
# Priors
shape=0.5, rate=0.0005,
mu_beta=0, V_beta=10,
# Various
seed=1234, verbose=1)
# Calcul of residual correlation between species
enviro.cors <- get_enviro_cor(mod)
Run the code above in your browser using DataLab