Learn R Programming

⚠️There's a newer version (0.1.5) of this package.Take me there.

jipApprox

Description

This package provides functions to approximate joint-inclusion probabilities in Unequal Probability Sampling, or to find Monte Carlo approximations of first and second-order inclusion probabilities of a general sampling design.

The main functions are:

  • jip_approx(): returns a matrix of approximated joint-inclusion probabilities for

unequal probability sampling design with high entropy;

  • jip_MonteCarlo(): produces a matrix of first and second order inclusion probabilities

for a given sampling design, approximated through Monte Carlo simulation. This method of approximation is more flexible but also computer-intensive.

  • HTvar(): returns the Horvitz-Thompson or Sen-Yates-Grundy variance or their estimates,

computed using true inclusion probabilities or an approximation obtained by jip_approx() or jip_MonteCarlo().

Installation

The development version of the package can be installed from GitHub:

# if not present, install 'devtools' package
install.packages("devtools")
devtools::install_github("rhobis/jipApprox")

Usage

library(jipApprox)

### Generate population data ---
N <- 20; n <- 5

set.seed(0)
x <- rgamma(500, scale=10, shape=5)
y <- abs( 2*x + 3.7*sqrt(x) * rnorm(N) )

pik <- n * x/sum(x)

### Approximate joint-inclusion probabilities for high entropy designs ---
pikl <- jip_approx(pik, method='Hajek')
pikl <- jip_approx(pik, method='HartleyRao')
pikl <- jip_approx(pik, method='Tille')
pikl <- jip_approx(pik, method='Brewer1')
pikl <- jip_approx(pik, method='Brewer2')
pikl <- jip_approx(pik, method='Brewer3')
pikl <- jip_approx(pik, method='Brewer4')

### Approximate inclusion probabilities through Monte Carlo simulation ---
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "brewer")
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "tille")
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "poisson")
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "maxEntropy")
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "randomSystematic")
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "systematic")
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "sampford")

More

  • Please, report any bug or issue here.
  • For more information, please contact the maintainer at roberto.sichera@unipa.it.

Copy Link

Version

Install

install.packages('jipApprox')

Monthly Downloads

187

Version

0.1.3

License

GPL-3

Maintainer

Roberto Sichera

Last Published

October 13th, 2020

Functions in jipApprox (0.1.3)

tille

Till<U+00E9>'s elimination procedure
pre_CPS

Conditional Poisson Sampling - compute selection probabilities
jipDFtoM

Transform a Joint-Inclusion Probability data.frame to a matrix
pre_tille

Till<U+00E9>'s elimination procedure - elimination probabilities
jip_Tille

Till<U+00E9>'s approximation of joint-inclusion probabilities
jip_MonteCarlo

Approximate inclusion probabilities by Monte Carlo simulation
sampford

Rao-Sampford sampling
save_output

Save partial results
maxEntropy

Conditional Poisson Sampling (maximum entropy sampling)
jip_approx

Approximate Joint-Inclusion Probabilities
jipMtoDF

Transform a matrix of Joint-Inclusion Probabilities to a data.frame
brewer

Brewer sampling procedure --------------------------------------------------
jipApprox

jipApprox: Approximate inclusion probabilities for survey sampling
HTvar

Variance of the Horvitz-Thompson estimator
jip_HartleyRao

Hartley-Rao approximation of joint-inclusion probabilities
jip_Hajek

H<U+00E1>jek's joint-inclusion probability approximation
excludeSSU

Exclude self-selecting units
jip_Brewer

Brewer's joint-inclusion probability approximations
is.wholenumber

Check if a number is integer