function for joint model in BIG DATA using FastJM
jmcsBig(dtlong, dtsurv, longm, survm, samplesize = 50, rd, id)
returns a list containing various output which are useful for prediction.
longitudinal dataset, which contains id,visit time,longitudinal measurements along with various covariates
survival dataset corresponding to the longitudinal dataset, with survival status and survival time
model for longitudinal response
survival model
sample size to divide the Big data
random effect part
name of id column in longitudinal dataset
Atanu Bhattacharjee, Bhrigu Kumar Rajbongshi and Gajendra Kumar Vishwakarma
Li, Shanpeng, et al. "Efficient Algorithms and Implementation of a Semiparametric Joint Model for Longitudinal and Competing Risk Data: With Applications to Massive Biobank Data." Computational and Mathematical Methods in Medicine 2022 (2022).
jmbayesBig,jmstanBig,joinRMLBig
# \donttest{
##
library(survival)
library(dplyr)
fit2<-jmcsBig(dtlong=data.frame(long2),dtsurv = data.frame(surv2),
longm=y~ x7+visit,survm=Surv(time,status)~x1+visit,rd= ~ visit|id,samplesize=200,id='id')
print(fit2)
##
# }
Run the code above in your browser using DataLab