Learn R Programming

jmv (version 0.7.3.1)

contTables: Contingency Tables

Description

X<U+00B2> test of association

Usage

contTables(data, rows, cols, counts = NULL, layers = NULL, chiSq = TRUE,
  chiSqCorr = FALSE, likeRat = FALSE, contCoef = FALSE, phiCra = FALSE,
  logOdds = FALSE, ciWidth = 95, gamma = FALSE, taub = FALSE,
  exp = FALSE, pcRow = FALSE, pcCol = FALSE, pcTot = FALSE)

Arguments

data

the data as a data frame

rows

a string naming the variable to use as the rows in the contingency table

cols

a string naming the variable to use as the columns in the contingency table

counts

a string naming the variable to use as counts, or NULL if each row represents a single observation

layers

a character vector naming variables to split the contingency table across

chiSq

TRUE (default) or FALSE, provide X<U+00B2>

chiSqCorr

TRUE or FALSE (default), provide X<U+00B2> with continuity correction

likeRat

TRUE or FALSE (default), provide the likelihood ratio

contCoef

TRUE or FALSE (default), provide the contingency coefficient

phiCra

TRUE or FALSE (default), provide Phi and Cramer's V

logOdds

TRUE or FALSE (default), provide the log odds ratio (only available for 2x2 tables)

ciWidth

a number between 50 and 99.9 (default: 95), width of the confidence intervals to provide

gamma

TRUE or FALSE (default), provide gamma

taub

TRUE or FALSE (default), provide Kendall's tau-b

exp

TRUE or FALSE (default), provide the expected counts

pcRow

TRUE or FALSE (default), provide row percentages

pcCol

TRUE or FALSE (default), provide column percentages

pcTot

TRUE or FALSE (default), provide total percentages

Examples

Run this code
data('HairEyeColor')
dat <- as.data.frame(HairEyeColor)

contTables(dat, rows = 'Hair', cols = 'Eye', counts = 'Freq')

#
#  Contingency Tables
#
#  Contingency Tables
#  -----------------------------------------------------
#    Hair     Brown    Blue    Hazel    Green    Total
#  -----------------------------------------------------
#    Black       68      20       15        5      108
#    Brown      119      84       54       29      286
#    Red         26      17       14       14       71
#    Blond        7      94       10       16      127
#    Total      220     215       93       64      592
#  -----------------------------------------------------
#
#
#  X<U+00B2> Tests
#  -------------------------------
#          Value    df    p
#  -------------------------------
#    X<U+00B2>      138     9    < .001
#    N       592
#  -------------------------------
#

Run the code above in your browser using DataLab