Learn R Programming

jmv (version 0.7.3.1)

corrMatrix: Correlation Matrix

Description

Correlation Matrix

Usage

corrMatrix(data, vars, pearson = TRUE, spearman = FALSE, kendall = FALSE,
  sig = TRUE, flag = FALSE, ci = FALSE, ciWidth = 95, plots = FALSE,
  plotDens = FALSE, plotStats = FALSE, hypothesis = "corr")

Arguments

data

the data as a data frame

vars

a vector of strings naming the variables to correlate in data

pearson

TRUE (default) or FALSE, provide Pearson's R

spearman

TRUE or FALSE (default), provide Spearman's rho

kendall

TRUE or FALSE (default), provide Kendall's tau-b

sig

TRUE (default) or FALSE, provide significance levels

flag

TRUE or FALSE (default), flag significant correlations

ci

TRUE or FALSE (default), provide confidence intervals

ciWidth

a number between 50 and 99.9 (default: 95), the width of confidence intervals to provide

plots

TRUE or FALSE (default), provide a correlation matrix plot

plotDens

TRUE or FALSE (default), provide densities in the correlation matrix plot

plotStats

TRUE or FALSE (default), provide statistics in the correlation matrix plot

hypothesis

one of 'corr' (default), 'pos', 'neg' specifying the alernative hypothesis; correlated, correlated positively, correlated negatively respectively.

Examples

Run this code

data('mtcars')

corrMatrix(mtcars, vars = c('mpg', 'cyl', 'disp', 'hp'))

#
#  Correlation Matrix
#
#  Correlation Matrix
#  --------------------------------------------------------------
#                           mpg      cyl       disp      hp
#  --------------------------------------------------------------
#    mpg     Pearson's r        <U+2014>    -0.852    -0.848    -0.776
#            p-value            <U+2014>    < .001    < .001    < .001
#
#    cyl     Pearson's r                  <U+2014>     0.902     0.832
#            p-value                      <U+2014>    < .001    < .001
#
#    disp    Pearson's r                            <U+2014>     0.791
#            p-value                                <U+2014>    < .001
#
#    hp      Pearson's r                                      <U+2014>
#            p-value                                          <U+2014>
#  --------------------------------------------------------------
#

Run the code above in your browser using DataLab