Multivariate Analysis of (Co)Variance (MANCOVA) is used to explore the relationship between multiple dependent variables, and one or more categorical and/or continuous explanatory variables.
mancova(data, deps, factors = NULL, covs = NULL,
multivar = list("pillai", "wilks", "hotel", "roy"), boxM = FALSE,
shapiro = FALSE, qqPlot = FALSE)
A results object containing:
results$multivar | a table | ||||
results$univar | a table | ||||
results$assump$boxM | a table | ||||
results$assump$shapiro | a table | ||||
results$assump$qqPlot | an image |
Tables can be converted to data frames with asDF
or as.data.frame
. For example:
results$multivar$asDF
as.data.frame(results$multivar)
the data as a data frame
a string naming the dependent variable from data
,
variable must be numeric
a vector of strings naming the factors from data
a vector of strings naming the covariates from data
one or more of 'pillai'
, 'wilks'
,
'hotel'
, or 'roy'
; use Pillai's Trace, Wilks' Lambda,
Hotelling's Trace, and Roy's Largest Root multivariate statistics,
respectively
TRUE
or FALSE
(default), provide Box's M test
TRUE
or FALSE
(default), provide Shapiro-Wilk
test
TRUE
or FALSE
(default), provide a Q-Q plot of
multivariate normality
data('iris')
mancova(data = iris,
deps = vars(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width),
factors = Species)
#
# MANCOVA
#
# Multivariate Tests
# ---------------------------------------------------------------------------
# value F df1 df2 p
# ---------------------------------------------------------------------------
# Species Pillai's Trace 1.19 53.5 8 290 < .001
# Wilks' Lambda 0.0234 199 8 288 < .001
# Hotelling's Trace 32.5 581 8 286 < .001
# Roy's Largest Root 32.2 1167 4 145 < .001
# ---------------------------------------------------------------------------
#
#
# Univariate Tests
# -----------------------------------------------------------------------------------------------
# Dependent Variable Sum of Squares df Mean Square F p
# -----------------------------------------------------------------------------------------------
# Species Sepal.Length 63.21 2 31.6061 119.3 < .001
# Sepal.Width 11.34 2 5.6725 49.2 < .001
# Petal.Length 437.10 2 218.5514 1180.2 < .001
# Petal.Width 80.41 2 40.2067 960.0 < .001
# Residuals Sepal.Length 38.96 147 0.2650
# Sepal.Width 16.96 147 0.1154
# Petal.Length 27.22 147 0.1852
# Petal.Width 6.16 147 0.0419
# -----------------------------------------------------------------------------------------------
#
Run the code above in your browser using DataLab