Learn R Programming

jmv (version 2.7.0)

anovaNP: One-Way ANOVA (Non-parametric)

Description

The Kruskal-Wallis test is used to explore the relationship between a continuous dependent variable, and a categorical explanatory variable. It is analagous to ANOVA, but with the advantage of being non-parametric and having fewer assumptions. However, it has the limitation that it can only test a single explanatory variable at a time.

Usage

anovaNP(data, deps, group, es = FALSE, pairs = FALSE,
  pairsDunn = FALSE, formula)

Value

A results object containing:

results$tablea table of the test results
results$comparisonsan array of pairwise comparison tables
results$comparisonsDunnan array of pairwise comparison tables

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$table$asDF

as.data.frame(results$table)

Arguments

data

the data as a data frame

deps

a string naming the dependent variable in data

group

a string naming the grouping or independent variable in data

es

TRUE or FALSE (default), provide effect-sizes

pairs

TRUE or FALSE (default), perform pairwise comparisons

pairsDunn

TRUE or FALSE (default), perform pairwise comparisons

formula

(optional) the formula to use, see the examples

Examples

Run this code
data('ToothGrowth')

anovaNP(formula = len ~ dose, data=ToothGrowth)

#
#  ONE-WAY ANOVA (NON-PARAMETRIC)
#
#  Kruskal-Wallis
#  -------------------------------
#           X²      df    p
#  -------------------------------
#    len    40.7     2    < .001
#  -------------------------------
#

Run the code above in your browser using DataLab