- data
the data as a data frame
- vars
a vector of strings naming the variables of interest in
data
- nFactorMethod
'parallel' (default), 'eigen' or
'fixed', the way to determine the number of factors
- nFactors
an integer (default: 1), the number of factors in the model
- minEigen
a number (default: 0), the minimal eigenvalue for a factor
to be included in the model
- extraction
'minres' (default), 'ml', or 'pa'
use respectively 'minimum residual', 'maximum likelihood', or 'prinicipal
axis' as the factor extraction method
- rotation
'none', 'varimax', 'quartimax',
'promax', 'oblimin' (default), or 'simplimax', the
rotation to use in estimation
- hideLoadings
a number (default: 0.3), hide factor loadings below
this value
- sortLoadings
TRUE or FALSE (default), sort the factor
loadings by size
- screePlot
TRUE or FALSE (default), show scree plot
- eigen
TRUE or FALSE (default), show eigenvalue table
- factorCor
TRUE or FALSE (default), show inter-factor
correlations
- factorSummary
TRUE or FALSE (default), show factor
summary
- modelFit
TRUE or FALSE (default), show model fit
measures and test
- kmo
TRUE or FALSE (default), show Kaiser-Meyer-Olkin
(KMO) measure of sampling adequacy (MSA) results
- bartlett
TRUE or FALSE (default), show Bartlett's test
of sphericity results
- factorScoreMethod
'Thurstone' (default), 'Bartlett',
'tenBerge', 'Anderson', or 'Harman' use respectively
'Thurstone', 'Bartlett', 'ten Berge', 'Anderson & Rubin', or 'Harman'
method for estimating factor scores