# Fit a classical univariate joint model with a single longitudinal outcome
# and a single time-to-event outcome
data(heart.valve)
hvd <- heart.valve[!is.na(heart.valve$log.grad) & !is.na(heart.valve$log.lvmi), ]
gamma <- c(0.1059417, 1.0843359)
sigma2 <- 0.03725999
beta <- c(4.9988669999, -0.0093527634, 0.0004317697)
D <- matrix(c(0.128219108, -0.006665505, -0.006665505, 0.002468688),
nrow = 2, byrow = TRUE)
set.seed(1)
fit1 <- mjoint(formLongFixed = log.lvmi ~ time + age,
formLongRandom = ~ time | num,
formSurv = Surv(fuyrs, status) ~ age,
data = hvd,
timeVar = "time",
inits = list(gamma = gamma, sigma2 = sigma2, beta = beta, D = D),
control = list(nMCscale = 2, earlyPhase = 5)) # controls for illustration only
confint(fit1, parm = "Longitudinal")
## Not run:
# # Fit a joint model with bivariate longitudinal outcomes
#
# data(heart.valve)
# hvd <- heart.valve[!is.na(heart.valve$log.grad) & !is.na(heart.valve$log.lvmi), ]
#
# fit2 <- mjoint(
# formLongFixed = list("grad" = log.grad ~ time + sex + hs,
# "lvmi" = log.lvmi ~ time + sex),
# formLongRandom = list("grad" = ~ 1 | num,
# "lvmi" = ~ time | num),
# formSurv = Surv(fuyrs, status) ~ age,
# data = list(hvd, hvd),
# inits = list("gamma" = c(0.11, 1.51, 0.80)),
# timeVar = "time",
# verbose = TRUE)
# confint(fit2)
# ## End(Not run)
Run the code above in your browser using DataLab