Learn R Programming

joineRML (version 0.1.1)

plot.mjoint: Plot diagnostics from an mjoint object

Description

Plot diagnostics from an mjoint object.

Usage

"plot"(x, type = "convergence", ...)

Arguments

x
an object inheriting from class mjoint for a joint model of time-to-event and multivariate longitudinal data.
type
currently the only option is type='convergence' for graphical examination of convergence over MCEM iteration.
...
other parameters passed to plotConvergence.

See Also

plot.default, par, abline.

Examples

Run this code
# Fit a classical univariate joint model with a single longitudinal outcome
# and a single time-to-event outcome

data(heart.valve)
hvd <- heart.valve[!is.na(heart.valve$log.grad) & !is.na(heart.valve$log.lvmi), ]

set.seed(1)
fit1 <- mjoint(formLongFixed = log.lvmi ~ time + age,
    formLongRandom = ~ time | num,
    formSurv = Surv(fuyrs, status) ~ age,
    data = hvd,
    timeVar = "time",
    control = list(nMCscale = 2, earlyPhase = 5)) # controls for illustration only

plot(fit1, param = "beta")  # LMM fixed effect parameters
plot(fit1, param = "gamma") # event model parameters

## Not run: 
# # Fit a joint model with bivariate longitudinal outcomes
# 
# data(heart.valve)
# hvd <- heart.valve[!is.na(heart.valve$log.grad) & !is.na(heart.valve$log.lvmi), ]
# 
# fit2 <- mjoint(
#     formLongFixed = list("grad" = log.grad ~ time + sex + hs,
#                          "lvmi" = log.lvmi ~ time + sex),
#     formLongRandom = list("grad" = ~ 1 | num,
#                           "lvmi" = ~ time | num),
#     formSurv = Surv(fuyrs, status) ~ age,
#     data = list(hvd, hvd),
#     inits = list("gamma" = c(0.11, 1.51, 0.80)),
#     timeVar = "time",
#     verbose = TRUE)
# 
# plot(fit2, type = "convergence", params = "gamma")
# ## End(Not run)

Run the code above in your browser using DataLab