
Last chance! 50% off unlimited learning
Sale ends in
Calculate the number of true positives and false positives among candidate breakpoints
getTpFp(candidates, trueBkp, tol, relax = -1)
A list with elements:
The number of false positives
Breakpoints found by the methods
True breakpoints
Tolerance on the position of candidate breakpoints called true
Controls the way multiple breapoints within tolerance area are recorded.
count one true positive if there is at least one breakpoint within tolerance area
count one true positive only if there is exactly one breakpoint within tolerance area
count only one true positive if there is exactly one breakpoint within tolerance area; other breakpoints are counted as false positives
Morgane Pierre-Jean and Pierre Neuvial
## load known real copy number regions
affyDat <- acnr::loadCnRegionData(dataSet="GSE29172", tumorFraction=0.7)
## generate a synthetic CN profile
K <- 10
len <- 2e4
sim <- getCopyNumberDataByResampling(len, K, minLength=100, regData=affyDat)
datS <- sim$profile
## (group-)fused Lasso segmentation
res <- PSSeg(data=datS, K=2*K, method="GFLars", stat="c", profile=TRUE)
## results of the initial (group-)fused lasso segmentation
getTpFp(res$initBkp, sim$bkp, tol=10, relax=-1)
getTpFp(res$initBkp, sim$bkp, tol=10, relax=0)
getTpFp(res$initBkp, sim$bkp, tol=10, relax=1)
plotSeg(datS, breakpoints=list(sim$bkp, res$initBkp))
## results after pruning (group-)fused Lasso candidates by dynamic programming)
getTpFp(res$bestBkp, sim$bkp, tol=10, relax=-1)
getTpFp(res$bestBkp, sim$bkp, tol=10, relax=0)
getTpFp(res$bestBkp, sim$bkp, tol=10, relax=1)
plotSeg(datS, breakpoints=list(sim$bkp, res$bestBkp))
Run the code above in your browser using DataLab