Learn R Programming

joker (version 0.14.2)

Binom: Binom Distribution

Description

The binomial distribution is a discrete probability distribution which models the probability of having x successes in n independent Bernoulli trials with success probability p.

Usage

Binom(size = 1, prob = 0.5)

# S4 method for Binom,numeric d(distr, x, log = FALSE)

# S4 method for Binom,numeric p(distr, q, lower.tail = TRUE, log.p = FALSE)

# S4 method for Binom,numeric qn(distr, p, lower.tail = TRUE, log.p = FALSE)

# S4 method for Binom,numeric r(distr, n)

# S4 method for Binom mean(x)

# S4 method for Binom var(x)

# S4 method for Binom sd(x)

# S4 method for Binom skew(x)

# S4 method for Binom kurt(x)

# S4 method for Binom entro(x)

# S4 method for Binom finf(x)

llbinom(x, size, prob)

# S4 method for Binom,numeric ll(distr, x)

ebinom(x, size, type = "mle", ...)

# S4 method for Binom,numeric mle(distr, x, na.rm = FALSE)

# S4 method for Binom,numeric me(distr, x, na.rm = FALSE)

vbinom(size, prob, type = "mle")

# S4 method for Binom avar_mle(distr)

# S4 method for Binom avar_me(distr)

Value

Each type of function returns a different type of object:

  • Distribution Functions: When supplied with one argument (distr), the d(), p(), q(), r(), ll() functions return the density, cumulative probability, quantile, random sample generator, and log-likelihood functions, respectively. When supplied with both arguments (distr and x), they evaluate the aforementioned functions directly.

  • Moments: Returns a numeric, either vector or matrix depending on the moment and the distribution. The moments() function returns a list with all the available methods.

  • Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.

  • Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.

Arguments

size

number of trials (zero or more).

prob

numeric. Probability of success on each trial.

distr

an object of class Binom.

x

For the density function, x is a numeric vector of quantiles. For the moments functions, x is an object of class Binom. For the log-likelihood and the estimation functions, x is the sample of observations.

log, log.p

logical. Should the logarithm of the probability be returned?

q

numeric. Vector of quantiles.

lower.tail

logical. If TRUE (default), probabilities are \(P(X \leq x)\), otherwise \(P(X > x)\).

p

numeric. Vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

type

character, case ignored. The estimator type (mle or me).

...

extra arguments.

na.rm

logical. Should the NA values be removed?

Details

The probability mass function (PMF) of the binomial distribution is given by: $$ f(x; n, p) = \binom{n}{x} p^x (1 - p)^{n - x}, \quad N \in \mathbb{N}, \quad p \in (0, 1),$$ with \(x \in \{0, 1, \dots, N\}\).

See Also

Functions from the stats package: dbinom(), pbinom(), qbinom(), rbinom()

Examples

Run this code
# -----------------------------------------------------
# Binomial Distribution Example
# -----------------------------------------------------

# Create the distribution
N <- 10 ; p <- 0.7
D <- Binom(N, p)

# ------------------
# dpqr Functions
# ------------------

d(D, 0:N) # density function
p(D, 0:N) # distribution function
qn(D, c(0.4, 0.8)) # inverse distribution function
x <- r(D, 100) # random generator function

# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself

# ------------------
# Moments
# ------------------

mean(D) # Expectation
var(D) # Variance
sd(D) # Standard Deviation
skew(D) # Skewness
kurt(D) # Excess Kurtosis
entro(D) # Entropy
finf(D) # Fisher Information Matrix

# List of all available moments
mom <- moments(D)
mom$mean # expectation

# ------------------
# Point Estimation
# ------------------

ll(D, x)
llbinom(x, N, p)

ebinom(x, size = N, type = "mle")
ebinom(x, size = N, type = "me")

mle(D, x)
me(D, x)
e(D, x, type = "mle")

# ------------------
# Estimator Variance
# ------------------

vbinom(N, p, type = "mle")
vbinom(N, p, type = "me")

avar_mle(D)
avar_me(D)

v(D, type = "mle")

Run the code above in your browser using DataLab