Learn R Programming

joker (version 0.14.2)

Geom: Geometric Distribution

Description

The Geometric distribution is a discrete probability distribution that models the number of failures before the first success in a sequence of independent Bernoulli trials, each with success probability \(0 < p \leq 1\).

Usage

Geom(prob = 0.5)

# S4 method for Geom,numeric d(distr, x, log = FALSE)

# S4 method for Geom,numeric p(distr, q, lower.tail = TRUE, log.p = FALSE)

# S4 method for Geom,numeric qn(distr, p, lower.tail = TRUE, log.p = FALSE)

# S4 method for Geom,numeric r(distr, n)

# S4 method for Geom mean(x)

# S4 method for Geom median(x)

# S4 method for Geom mode(x)

# S4 method for Geom var(x)

# S4 method for Geom sd(x)

# S4 method for Geom skew(x)

# S4 method for Geom kurt(x)

# S4 method for Geom entro(x)

# S4 method for Geom finf(x)

llgeom(x, prob)

# S4 method for Geom,numeric ll(distr, x)

egeom(x, type = "mle", ...)

# S4 method for Geom,numeric mle(distr, x, na.rm = FALSE)

# S4 method for Geom,numeric me(distr, x, na.rm = FALSE)

vgeom(prob, type = "mle")

# S4 method for Geom avar_mle(distr)

# S4 method for Geom avar_me(distr)

Value

Each type of function returns a different type of object:

  • Distribution Functions: When supplied with one argument (distr), the d(), p(), q(), r(), ll() functions return the density, cumulative probability, quantile, random sample generator, and log-likelihood functions, respectively. When supplied with both arguments (distr and x), they evaluate the aforementioned functions directly.

  • Moments: Returns a numeric, either vector or matrix depending on the moment and the distribution. The moments() function returns a list with all the available methods.

  • Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.

  • Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.

Arguments

prob

numeric. Probability of success.

distr

an object of class Geom.

x

For the density function, x is a numeric vector of quantiles. For the moments functions, x is an object of class Geom. For the log-likelihood and the estimation functions, x is the sample of observations.

log, log.p

logical. Should the logarithm of the probability be returned?

q

numeric. Vector of quantiles.

lower.tail

logical. If TRUE (default), probabilities are \(P(X \leq x)\), otherwise \(P(X > x)\).

p

numeric. Vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

type

character, case ignored. The estimator type (mle or me).

...

extra arguments.

na.rm

logical. Should the NA values be removed?

Details

The probability mass function (PMF) of the Geometric distribution is: $$ P(X = k) = (1 - p)^k p, \quad k \in \mathbb{N}_0.$$

See Also

Functions from the stats package: dgeom(), pgeom(), qgeom(), rgeom()

Examples

Run this code
# -----------------------------------------------------
# Geom Distribution Example
# -----------------------------------------------------

# Create the distribution
p <- 0.4
D <- Geom(p)

# ------------------
# dpqr Functions
# ------------------

d(D, 0:4) # density function
p(D, 0:4) # distribution function
qn(D, c(0.4, 0.8)) # inverse distribution function
x <- r(D, 100) # random generator function

# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself

# ------------------
# Moments
# ------------------

mean(D) # Expectation
median(D) # Median
mode(D) # Mode
var(D) # Variance
sd(D) # Standard Deviation
skew(D) # Skewness
kurt(D) # Excess Kurtosis
entro(D) # Entropy
finf(D) # Fisher Information Matrix

# List of all available moments
mom <- moments(D)
mom$mean # expectation

# ------------------
# Point Estimation
# ------------------

ll(D, x)
llgeom(x, p)

egeom(x, type = "mle")
egeom(x, type = "me")

mle(D, x)
me(D, x)
e(D, x, type = "mle")

mle("geom", x) # the distr argument can be a character

# ------------------
# Estimator Variance
# ------------------

vgeom(p, type = "mle")
vgeom(p, type = "me")

avar_mle(D)
avar_me(D)

v(D, type = "mle")

Run the code above in your browser using DataLab