
Last chance! 50% off unlimited learning
Sale ends in
The multivariate gamma distribution is a multivariate absolute continuous
probability distribution, defined as the cumulative sum of independent
gamma random variables with possibly different shape parameters
Multigam(shape = 1, scale = 1)dmultigam(x, shape, scale, log = FALSE)
rmultigam(n, shape, scale)
# S4 method for Multigam,numeric
d(distr, x, log = FALSE)
# S4 method for Multigam,matrix
d(distr, x, log = FALSE)
# S4 method for Multigam,numeric
r(distr, n)
# S4 method for Multigam
mean(x)
# S4 method for Multigam
var(x)
# S4 method for Multigam
finf(x)
llmultigam(x, shape, scale)
# S4 method for Multigam,matrix
ll(distr, x)
emultigam(x, type = "mle", ...)
# S4 method for Multigam,matrix
mle(
distr,
x,
par0 = "same",
method = "L-BFGS-B",
lower = 1e-05,
upper = Inf,
na.rm = FALSE
)
# S4 method for Multigam,matrix
me(distr, x, na.rm = FALSE)
# S4 method for Multigam,matrix
same(distr, x, na.rm = FALSE)
vmultigam(shape, scale, type = "mle")
# S4 method for Multigam
avar_mle(distr)
# S4 method for Multigam
avar_me(distr)
# S4 method for Multigam
avar_same(distr)
Each type of function returns a different type of object:
Distribution Functions: When supplied with one argument (distr
), the
d()
, p()
, q()
, r()
, ll()
functions return the density, cumulative
probability, quantile, random sample generator, and log-likelihood functions,
respectively. When supplied with both arguments (distr
and x
), they
evaluate the aforementioned functions directly.
Moments: Returns a numeric, either vector or matrix depending on the moment
and the distribution. The moments()
function returns a list with all the
available methods.
Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.
Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.
numeric. The non-negative distribution parameters.
For the density function, x
is a numeric vector of quantiles. For
the moments functions, x
is an object of class Multigam
. For the
log-likelihood and the estimation functions, x
is the sample of
observations.
logical. Should the logarithm of the probability be returned?
number of observations. If length(n) > 1
, the length is taken to
be the number required.
an object of class Multigam
.
character, case ignored. The estimator type (mle, me, or same).
extra arguments.
arguments passed to optim for the mle optimization. See Details.
logical. Should the NA
values be removed?
The probability density function (PDF) of the multivariate gamma distribution
is given by:
The MLE of the multigamma distribution parameters is not available in closed
form and has to be approximated numerically. This is done with optim()
.
Specifically, instead of solving a 1e-5
and upper bound Inf
.
The par0
argument can either be a numeric (satisfying
lower <= par0 <= upper
) or a character specifying the closed-form estimator
to be used as initialization for the algorithm ("me"
or "same"
- the
default value).
Mathal, A. M., & Moschopoulos, P. G. (1992). A form of multivariate gamma distribution. Annals of the Institute of Statistical Mathematics, 44, 97-106.
Oikonomidis, I. & Trevezas, S. (2025), Moment-Type Estimators for the Dirichlet and the Multivariate Gamma Distributions, arXiv, https://arxiv.org/abs/2311.15025
# -----------------------------------------------------
# Multivariate Gamma Distribution Example
# -----------------------------------------------------
# Create the distribution
a <- c(0.5, 3, 5) ; b <- 5
D <- Multigam(a, b)
# ------------------
# dpqr Functions
# ------------------
d(D, c(0.3, 2, 10)) # density function
# alternative way to use the function
df <- d(D) ; df(c(0.3, 2, 10)) # df is a function itself
x <- r(D, 100) # random generator function
# ------------------
# Moments
# ------------------
mean(D) # Expectation
var(D) # Variance
finf(D) # Fisher Information Matrix
# List of all available moments
mom <- moments(D)
mom$mean # expectation
# ------------------
# Point Estimation
# ------------------
ll(D, x)
llmultigam(x, a, b)
emultigam(x, type = "mle")
emultigam(x, type = "me")
emultigam(x, type = "same")
mle(D, x)
me(D, x)
same(D, x)
e(D, x, type = "mle")
mle("multigam", x) # the distr argument can be a character
# ------------------
# Estimator Variance
# ------------------
vmultigam(a, b, type = "mle")
vmultigam(a, b, type = "me")
vmultigam(a, b, type = "same")
avar_mle(D)
avar_me(D)
avar_same(D)
v(D, type = "mle")
Run the code above in your browser using DataLab