Learn R Programming

joker (version 0.14.2)

Norm: Normal Distribution

Description

The Normal or Gaussian distribution, is an absolute continuous probability distribution characterized by two parameters: the mean \(\mu\) and the standard deviation \(\sigma > 0\).

Usage

Norm(mean = 0, sd = 1)

# S4 method for Norm,numeric d(distr, x, log = FALSE)

# S4 method for Norm,numeric p(distr, q, lower.tail = TRUE, log.p = FALSE)

# S4 method for Norm,numeric qn(distr, p, lower.tail = TRUE, log.p = FALSE)

# S4 method for Norm,numeric r(distr, n)

# S4 method for Norm mean(x)

# S4 method for Norm median(x)

# S4 method for Norm mode(x)

# S4 method for Norm var(x)

# S4 method for Norm sd(x)

# S4 method for Norm skew(x)

# S4 method for Norm kurt(x)

# S4 method for Norm entro(x)

# S4 method for Norm finf(x)

llnorm(x, mean, sd)

# S4 method for Norm,numeric ll(distr, x)

enorm(x, type = "mle", ...)

# S4 method for Norm,numeric mle(distr, x, na.rm = FALSE)

# S4 method for Norm,numeric me(distr, x, na.rm = FALSE)

vnorm(mean, sd, type = "mle")

# S4 method for Norm avar_mle(distr)

# S4 method for Norm avar_me(distr)

Value

Each type of function returns a different type of object:

  • Distribution Functions: When supplied with one argument (distr), the d(), p(), q(), r(), ll() functions return the density, cumulative probability, quantile, random sample generator, and log-likelihood functions, respectively. When supplied with both arguments (distr and x), they evaluate the aforementioned functions directly.

  • Moments: Returns a numeric, either vector or matrix depending on the moment and the distribution. The moments() function returns a list with all the available methods.

  • Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.

  • Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.

Arguments

mean, sd

numeric. The distribution parameters.

distr

an object of class Norm.

x

For the density function, x is a numeric vector of quantiles. For the moments functions, x is an object of class Norm. For the log-likelihood and the estimation functions, x is the sample of observations.

log, log.p

logical. Should the logarithm of the probability be returned?

q

numeric. Vector of quantiles.

lower.tail

logical. If TRUE (default), probabilities are \(P(X \leq x)\), otherwise \(P(X > x)\).

p

numeric. Vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

type

character, case ignored. The estimator type (mle or me).

...

extra arguments.

na.rm

logical. Should the NA values be removed?

Details

The probability density function (PDF) of the Normal distribution is: $$ f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2} .$$

See Also

Functions from the stats package: dnorm(), pnorm(), qnorm(), rnorm()

Examples

Run this code
# -----------------------------------------------------
# Normal Distribution Example
# -----------------------------------------------------

# Create the distribution
m <- 3 ; s <- 5
D <- Norm(m, s)

# ------------------
# dpqr Functions
# ------------------

d(D, c(0.3, 2, 10)) # density function
p(D, c(0.3, 2, 10)) # distribution function
qn(D, c(0.4, 0.8)) # inverse distribution function
x <- r(D, 100) # random generator function

# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself

# ------------------
# Moments
# ------------------

mean(D) # Expectation
median(D) # Median
mode(D) # Mode
var(D) # Variance
sd(D) # Standard Deviation
skew(D) # Skewness
kurt(D) # Excess Kurtosis
entro(D) # Entropy
finf(D) # Fisher Information Matrix

# List of all available moments
mom <- moments(D)
mom$mean # expectation

# ------------------
# Point Estimation
# ------------------

enorm(x, type = "mle")
enorm(x, type = "me")

mle(D, x)
me(D, x)
e(D, x, type = "mle")

mle("norm", x) # the distr argument can be a character

# ------------------
# Estimator Variance
# ------------------

vnorm(m, s, type = "mle")
vnorm(m, s, type = "me")

avar_mle(D)
avar_me(D)

v(D, type = "mle")

Run the code above in your browser using DataLab