Learn R Programming

joker (version 0.14.2)

Pois: Poisson Distribution

Description

The Poisson distribution is a discrete probability distribution that models the number of events occurring in a fixed interval of time or space, given that the events occur with a constant rate \(\lambda > 0\) and independently of the time since the last event.

Usage

Pois(lambda = 1)

# S4 method for Pois,numeric d(distr, x, log = FALSE)

# S4 method for Pois,numeric p(distr, q, lower.tail = TRUE, log.p = FALSE)

# S4 method for Pois,numeric qn(distr, p, lower.tail = TRUE, log.p = FALSE)

# S4 method for Pois,numeric r(distr, n)

# S4 method for Pois mean(x)

# S4 method for Pois median(x)

# S4 method for Pois mode(x)

# S4 method for Pois var(x)

# S4 method for Pois sd(x)

# S4 method for Pois skew(x)

# S4 method for Pois kurt(x)

# S4 method for Pois entro(x)

# S4 method for Pois finf(x)

llpois(x, lambda)

# S4 method for Pois,numeric ll(distr, x)

epois(x, type = "mle", ...)

# S4 method for Pois,numeric mle(distr, x, na.rm = FALSE)

# S4 method for Pois,numeric me(distr, x, na.rm = FALSE)

vpois(lambda, type = "mle")

# S4 method for Pois avar_mle(distr)

# S4 method for Pois avar_me(distr)

Value

Each type of function returns a different type of object:

  • Distribution Functions: When supplied with one argument (distr), the d(), p(), q(), r(), ll() functions return the density, cumulative probability, quantile, random sample generator, and log-likelihood functions, respectively. When supplied with both arguments (distr and x), they evaluate the aforementioned functions directly.

  • Moments: Returns a numeric, either vector or matrix depending on the moment and the distribution. The moments() function returns a list with all the available methods.

  • Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.

  • Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.

Arguments

lambda

numeric. The distribution parameter.

distr

an object of class Pois.

x

For the density function, x is a numeric vector of quantiles. For the moments functions, x is an object of class Pois. For the log-likelihood and the estimation functions, x is the sample of observations.

log, log.p

logical. Should the logarithm of the probability be returned?

q

numeric. Vector of quantiles.

lower.tail

logical. If TRUE (default), probabilities are \(P(X \leq x)\), otherwise \(P(X > x)\).

p

numeric. Vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

type

character, case ignored. The estimator type (mle or me).

...

extra arguments.

na.rm

logical. Should the NA values be removed?

Details

The probability mass function (PMF) of the Poisson distribution is: $$ P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k \in \mathbb{N}_0. $$

See Also

Functions from the stats package: dpois(), ppois(), qpois(), rpois()

Examples

Run this code
# -----------------------------------------------------
# Pois Distribution Example
# -----------------------------------------------------

# Create the distribution
lambda <- 5
D <- Pois(lambda)

# ------------------
# dpqr Functions
# ------------------

d(D, 0:10) # density function
p(D, 0:10) # distribution function
qn(D, c(0.4, 0.8)) # inverse distribution function
x <- r(D, 100) # random generator function

# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself

# ------------------
# Moments
# ------------------

mean(D) # Expectation
median(D) # Median
mode(D) # Mode
var(D) # Variance
sd(D) # Standard Deviation
skew(D) # Skewness
kurt(D) # Excess Kurtosis
entro(D) # Entropy
finf(D) # Fisher Information Matrix

# List of all available moments
mom <- moments(D)
mom$mean # expectation

# ------------------
# Point Estimation
# ------------------

ll(D, x)
llpois(x, lambda)

epois(x, type = "mle")
epois(x, type = "me")

mle(D, x)
me(D, x)
e(D, x, type = "mle")

mle("pois", x) # the distr argument can be a character

# ------------------
# Estimator Variance
# ------------------

vpois(lambda, type = "mle")
vpois(lambda, type = "me")

avar_mle(D)
avar_me(D)

v(D, type = "mle")

Run the code above in your browser using DataLab