Learn R Programming

jomo (version 1.2-1)

jomo1: JM Imputation of single level data

Description

A wrapper function linking the 3 single level JM Imputation functions. The matrix of responses Y, must be a data.frame where continuous variables are numeric and binary/categorical variables are factors.

Usage

jomo1 (Y, X=NULL, betap=NULL, covp=NULL, Sp=NULL, 
      nburn=500, nbetween=100, nimp=5, output=1, out.iter=10)

Arguments

Y
a data.frame where columns related to continuous variables are numeric and columns related to binary/categorical variables are factors.
X
A data frame, or matrix, with covariates of the joint imputation model. Rows correspond to different observations, while columns are different variables. Missing values are not allowed in these variables. In case we want an intercept, a column of 1 is nee
betap
Starting value for beta, the vector(s) of fixed effects. Rows index different covariates and columns index different outcomes. For each n-category variable we define n-1 latent normals. The default is a matrix of zeros.
covp
Starting value for the covariance matrix. Dimension of this square matrix is equal to the number of outcomes (continuous plus latent normals) in the imputation model. The default is the identity matrix.
Sp
Scale matrix for the inverse-Wishart prior for the covariance matrix. The default is the identity matrix.
nburn
Number of burn in iterations. Default is 100.
nbetween
Number of iterations between two successive imputations. Default is 100.
nimp
Number of Imputations. Default is 5.
output
When set to any value different from 1 (default), no output is shown on screen at the end of the process.
out.iter
When set to K, every K iterations a message "Iteration number N*K completed" is printed on screen. Default is 10.

Value

  • On screen, the posterior mean of the fixed effects estimates and of the covariance matrix are shown. The only argument returned is the imputed dataset in long format. Column "Imputation" indexes the imputations. Imputation number 0 are the original data.

Details

This is just a wrapper function to link jomo1con, jomo1cat and jomo1mix. Format of the columns of Y is crucial in order for the function to be using the right sub-function.

References

Carpenter J.R., Kenward M.G., (2013), Multiple Imputation and its Application. Chapter 3-5, Wiley, ISBN: 978-0-470-74052-1.

Examples

Run this code
# Using sldata:

data(sldata)
attach(sldata)

#We define all the inputs:

Y=data.frame(measure,age)
nburn=as.integer(200);
nbetween=as.integer(200);
nimp=as.integer(5);

# Then we run the function:

imp<-jomo1(Y,nburn=nburn,nbetween=nbetween,nimp=nimp)

Run the code above in your browser using DataLab