#First of all we load and attach the data:
data(mldata)
attach(mldata)
#Then we define the inputs
# nimp, nburn and nbetween are smaller than they should. This is
#just because of CRAN policies on the examples.
Y_cat=data.frame(social)
Y_numcat=matrix(4,1,1)
X=data.frame(rep(1,1000),sex)
Z<-data.frame(rep(1,1000))
clus<-data.frame(city)
betap<-matrix(0,2,3)
up<-matrix(0,10,3)
covp<-matrix(diag(1,3),30,3,2)
covu<-diag(1,3)
Sp=diag(1,3);
Sup=diag(1,3);
a=5
nburn=as.integer(100);
# And finally we can run either the model with fixed or random cluster-specific covariance matrices:
imp<-jomo1rancathr.MCMCchain(Y_cat, Y_numcat, X,Z,clus,betap,
up,covp, covu,Sp,Sup,nburn, a, meth="fixed")
#We can check the convergence of the first element of beta:
plot(c(1:nburn),imp$collectbeta[1,1,1:nburn],type="l")
#Or similarly we can check the convergence of any element of th elevel 2 covariance matrix:
plot(c(1:nburn),imp$collectcovu[1,2,1:nburn],type="l")
Run the code above in your browser using DataLab