
svysd
extends the survey
package by calculating standard
deviations with syntax similar to the original package, which provides
only a svyvar()
function.
svysd(
formula,
design,
na.rm = FALSE,
digits = getOption("jtools-digits", default = 3),
...
)
A formula (e.g., ~var1+var2) specifying the term(s) of interest.
The survey.design
or svyrep.design
object.
Logical. Should cases with missing values be dropped?
An integer specifying the number of digits past the decimal to
report in the output. Default is 3. You can change the default number of
digits for all jtools functions with
options("jtools-digits" = digits)
where digits is the desired number.
Additional arguments passed to svyvar()
.
An alternative is to simply do sqrt(svyvar(~term, design = design))
.
However, if printing and sharing the output, this may be misleading since
the output will say "variance."
Other survey package extensions:
svycor()
Other survey tools:
pf_sv_test()
,
svycor()
,
weights_tests()
,
wgttest()
# NOT RUN {
if (requireNamespace("survey")) {
library(survey)
data(api)
# Create survey design object
dstrat <- svydesign(id = ~1,strata = ~stype, weights = ~pw, data = apistrat,
fpc=~fpc)
# Print the standard deviation of some variables
svysd(~api00+ell+meals, design = dstrat)
}
# }
Run the code above in your browser using DataLab