The function estimates a vine copula density using kernel estimators for the pair copulas (based on the kdecopula package).
kdevinecop(
data,
matrix = NA,
method = "TLL2",
renorm.iter = 3L,
mult = 1,
test.level = NA,
trunc.level = NA,
treecrit = "tau",
cores = 1,
info = FALSE
)
An object of class kdevinecop
. That is, a list containing
lists of the estimted pair copulas in each tree,
the structure matrix of the vine,
additional information about the fit (if info = TRUE
).
(
R-Vine matrix (NA
(default) the structure selection heuristic of Dissman et al.
(2013) is applied.
see kdecop
.
see kdecop
.
see kdecop
.
significance level for independence test. If you provide a
number in BiCopIndTest
) will be performed for
each pair; if the null hypothesis of independence cannot be rejected, the
independence copula will be set for this pair. If test.level = NA
(default), no independence test will be performed.
integer; the truncation level. All pair copulas in trees above the truncation level will be set to independence.
criterion for structure selection; defaults to "tau"
.
integer; if cores > 1
, estimation will be parallized
within each tree (using foreach
).
logical; if TRUE
, additional information about the
estimate will be gathered (see kdecop
).
Nagler, T., Czado, C. (2016)
Evading the curse of
dimensionality in nonparametric density estimation with simplified vine
copulas.
Journal of Multivariate Analysis 151, 69-89
(doi:10.1016/j.jmva.2016.07.003)
Nagler, T., Schellhase, C. and Czado, C. (2017)
Nonparametric
estimation of simplified vine copula models: comparison of methods
arXiv:1701.00845
Dissmann, J., Brechmann, E. C., Czado, C., and Kurowicka, D. (2013).
Selecting and estimating regular vine copulae and application to financial
returns.
Computational Statistics & Data Analysis, 59(0):52--69.
dkdevinecop
,
kdecop
,
BiCopIndTest
,
foreach
data(wdbc, package = "kdecopula")
# rank-transform to copula data (margins are uniform)
u <- VineCopula::pobs(wdbc[, 5:7], ties = "average")
u <- u[1:30, ]
fit <- kdevinecop(u) # estimate density
dkdevinecop(c(0.1, 0.1, 0.1), fit) # evaluate density estimate
contour(fit) # contour matrix (Gaussian scale)
pairs(rkdevinecop(500, fit)) # plot simulated data
Run the code above in your browser using DataLab