h.amise evaluates the asymptotic
mean integrated squared error AMISE for optimal smoothing
parameters $h$ of r'th derivative of kernel density
estimator one-dimensional.h.amise(x, ...)
## S3 method for class 'default':
h.amise(x, deriv.order = 0, lower = 0.1 * hos, upper = 2 * hos,
tol = 0.1 * lower, kernel = c("gaussian", "epanechnikov", "triweight",
"tricube", "biweight", "cosine"), ...)hos (Over-smoothing) is calculated internally
from an kernel, see details.optimize."gaussian".x argument.h.amise asymptotic mean integrated squared error implements for choosing
the optimal bandwidth $h$ of a r'th derivative kernel density estimator.
We Consider the following AMISE version of the r'th derivative of $f$ the r'th
derivative of the kernel estimate (see Scott 1992, pp 131):
$$AMISE(h;r)= \frac{R\left(K^{(r)}\right)}{nh^{2r+1}} + \frac{1}{4} h^{4} \mu_{2}^{2}(K) R\left(f^{(r+2)}\right)$$
The optimal bandwidth minimizing this function is:
$$h_{(r)}^{\ast} = \left[\frac{(2r+1)R\left(K^{(r)}\right)}{\mu_{2}^{2}(K) R\left(f^{(r+2)}\right)}\right]^{1/(2r+5)} n^{-1/(2r+5)}$$
whereof
$$\inf_{h > 0} AMISE(h;r) = \frac{2r+5}{4} R\left(K^{(r)}\right)^{\frac{4}{(2r+5)}} \left[ \frac{\mu_{2}^{2}(K)R\left(f^{(r+2)}\right)}{2r+1} \right]^{\frac{2r+1}{2r+5}} n^{-\frac{4}{2r+5}}$$
which is the smallest possible AMISE for estimation of $f^{(r)}(x)$ using the kernel $K(x)$,
where $R\left(K^{(r)}\right) = \int_{R} K^{(r)}(x)^{2} dx$ and $\mu_{2}(K) = \int_{R}x^{2} K(x) dx$.
The range over which to minimize is hos Oversmoothing bandwidth, the default is almost always
satisfactory. See George and Scott (1985), George (1990), Scott (1992, pp 165), Wand and Jones (1995, pp 61).plot.h.amise, see nmise in package deriv.order = 0)
which is constructed from data which follow a normal distribution.## Derivative order = 0
h.amise(kurtotic,deriv.order = 0)
## Derivative order = 1
h.amise(kurtotic,deriv.order = 1)Run the code above in your browser using DataLab