
Last chance! 50% off unlimited learning
Sale ends in
A model is a directed acyclic graph of layers.
keras_model(inputs, outputs = NULL)
Input layer
Output layer
Other model functions: compile
,
evaluate_generator
, evaluate
,
fit_generator
, fit
,
get_config
, get_layer
,
keras_model_sequential
,
pop_layer
,
predict.keras.engine.training.Model
,
predict_generator
,
predict_on_batch
,
predict_proba
,
summary.keras.engine.training.Model
,
train_on_batch
# NOT RUN {
library(keras)
# input layer
inputs <- layer_input(shape = c(784))
# outputs compose input + dense layers
predictions <- inputs %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 10, activation = 'softmax')
# create and compile model
model <- keras_model(inputs = inputs, outputs = predictions)
model %>% compile(
optimizer = 'rmsprop',
loss = 'categorical_crossentropy',
metrics = c('accuracy')
)
# }
Run the code above in your browser using DataLab