Calculates how often predictions match binary labels
metric_binary_accuracy(
y_true,
y_pred,
threshold = 0.5,
...,
name = "binary_accuracy",
dtype = NULL
)If y_true and y_pred are missing, a (subclassed) Metric
instance is returned. The Metric object can be passed directly to
compile(metrics = ) or used as a standalone object. See ?Metric for
example usage.
Alternatively, if called with y_true and y_pred arguments, then the
computed case-wise values for the mini-batch are returned directly.
Tensor of true targets.
Tensor of predicted targets.
(Optional) Float representing the threshold for deciding whether prediction values are 1 or 0.
Passed on to the underlying metric. Used for forwards and backwards compatibility.
(Optional) string name of the metric instance.
(Optional) data type of the metric result.
This metric creates two local variables, total and count that are used to
compute the frequency with which y_pred matches y_true. This frequency is
ultimately returned as binary accuracy: an idempotent operation that simply
divides total by count.
If sample_weight is NULL, weights default to 1.
Use sample_weight of 0 to mask values.
Other metrics:
custom_metric(),
metric_accuracy(),
metric_auc(),
metric_binary_crossentropy(),
metric_categorical_accuracy(),
metric_categorical_crossentropy(),
metric_categorical_hinge(),
metric_cosine_similarity(),
metric_false_negatives(),
metric_false_positives(),
metric_hinge(),
metric_kullback_leibler_divergence(),
metric_logcosh_error(),
metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),
metric_mean_iou(),
metric_mean_relative_error(),
metric_mean_squared_error(),
metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),
metric_mean_wrapper(),
metric_mean(),
metric_poisson(),
metric_precision_at_recall(),
metric_precision(),
metric_recall_at_precision(),
metric_recall(),
metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),
metric_sparse_categorical_accuracy(),
metric_sparse_categorical_crossentropy(),
metric_sparse_top_k_categorical_accuracy(),
metric_specificity_at_sensitivity(),
metric_squared_hinge(),
metric_sum(),
metric_top_k_categorical_accuracy(),
metric_true_negatives(),
metric_true_positives()