Learn R Programming

keras (version 2.7.0)

layer_rescaling: Multiply inputs by scale and adds offset

Description

Multiply inputs by scale and adds offset

Usage

layer_rescaling(object, scale, offset = 0, ...)

Arguments

object

What to call the new Layer instance with. Typically a keras Model, another Layer, or a tf.Tensor/KerasTensor. If object is missing, the Layer instance is returned, otherwise, layer(object) is returned.

scale

Float, the scale to apply to the inputs.

offset

Float, the offset to apply to the inputs.

...

standard layer arguments.

Details

For instance:

  1. To rescale an input in the [0, 255] range to be in the [0, 1] range, you would pass scale=1./255.

  2. To rescale an input in the [0, 255] range to be in the [-1, 1] range, you would pass scale = 1/127.5, offset = -1.

The rescaling is applied both during training and inference.

Input shape: Arbitrary.

Output shape: Same as input.

See Also

Other image preprocessing layers: layer_center_crop(), layer_resizing()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(), layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(), layer_random_crop(), layer_random_flip(), layer_random_height(), layer_random_rotation(), layer_random_translation(), layer_random_width(), layer_random_zoom(), layer_resizing(), layer_string_lookup(), layer_text_vectorization()