Image resizing layer
layer_resizing(
object,
height,
width,
interpolation = "bilinear",
crop_to_aspect_ratio = FALSE,
...
)
What to call the new Layer
instance with. Typically a keras
Model
, another Layer
, or a tf.Tensor
/KerasTensor
. If object
is
missing, the Layer
instance is returned, otherwise, layer(object)
is
returned.
Integer, the height of the output shape.
Integer, the width of the output shape.
String, the interpolation method. Defaults to "bilinear"
.
Supports "bilinear"
, "nearest"
, "bicubic"
, "area"
, "lanczos3"
,
"lanczos5"
, "gaussian"
, and "mitchellcubic"
.
If TRUE, resize the images without aspect
ratio distortion. When the original aspect ratio differs from the target
aspect ratio, the output image will be cropped so as to return the largest
possible window in the image (of size (height, width)
) that matches
the target aspect ratio. By default (crop_to_aspect_ratio = FALSE
),
aspect ratio may not be preserved.
standard layer arguments.
Resize the batched image input to target height and width. The input should
be a 4D (batched) or 3D (unbatched) tensor in "channels_last"
format.
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Resizing
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/resizing
Other image preprocessing layers:
layer_center_crop()
,
layer_rescaling()
Other preprocessing layers:
layer_category_encoding()
,
layer_center_crop()
,
layer_discretization()
,
layer_hashing()
,
layer_integer_lookup()
,
layer_normalization()
,
layer_random_contrast()
,
layer_random_crop()
,
layer_random_flip()
,
layer_random_height()
,
layer_random_rotation()
,
layer_random_translation()
,
layer_random_width()
,
layer_random_zoom()
,
layer_rescaling()
,
layer_string_lookup()
,
layer_text_vectorization()