Learn R Programming

keras (version 2.7.0)

optimizer_sgd: Stochastic gradient descent optimizer

Description

Stochastic gradient descent optimizer with support for momentum, learning rate decay, and Nesterov momentum.

Usage

optimizer_sgd(
  learning_rate = 0.01,
  momentum = 0,
  decay = 0,
  nesterov = FALSE,
  clipnorm = NULL,
  clipvalue = NULL,
  ...
)

Arguments

learning_rate

float >= 0. Learning rate.

momentum

float >= 0. Parameter that accelerates SGD in the relevant direction and dampens oscillations.

decay

float >= 0. Learning rate decay over each update.

nesterov

boolean. Whether to apply Nesterov momentum.

clipnorm

Gradients will be clipped when their L2 norm exceeds this value.

clipvalue

Gradients will be clipped when their absolute value exceeds this value.

...

Unused, present only for backwards compatability

Value

Optimizer for use with compile.keras.engine.training.Model.

See Also

Other optimizers: optimizer_adadelta(), optimizer_adagrad(), optimizer_adamax(), optimizer_adam(), optimizer_nadam(), optimizer_rmsprop()