Max pooling operations
MaxPooling1D(pool_size = 2, strides = NULL, padding = "valid",
input_shape = NULL)MaxPooling2D(pool_size = c(2, 2), strides = NULL, padding = "valid",
data_format = NULL, input_shape = NULL)
MaxPooling3D(pool_size = c(2, 2, 2), strides = NULL, padding = "valid",
data_format = NULL, input_shape = NULL)
Integer or triplet of integers; size(s) of the max pooling windows.
Integer, triplet of integers, or None. Factor(s) by which to downscale. E.g. 2 will halve the input. If NULL, it will default to pool_size.
One of "valid" or "same" (case-insensitive).
only need when first layer of a model; sets the input shape of the data
A string, one of channels_last (default) or channels_first
Taylor B. Arnold, taylor.arnold@acm.org
Chollet, Francois. 2015. Keras: Deep Learning library for Theano and TensorFlow.
Other layers: Activation
,
ActivityRegularization
,
AdvancedActivation
,
BatchNormalization
, Conv
,
Dense
, Dropout
,
Embedding
, Flatten
,
GaussianNoise
, LayerWrapper
,
LocallyConnected
, Masking
,
Permute
, RNN
,
RepeatVector
, Reshape
,
Sequential
if(keras_available()) {
X_train <- array(rnorm(100 * 28 * 28), dim = c(100, 28, 28, 1))
Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)
mod <- Sequential()
mod$add(Conv2D(filters = 2, kernel_size = c(2, 2),
input_shape = c(28, 28, 1)))
mod$add(Activation("relu"))
mod$add(MaxPooling2D(pool_size=c(2, 2)))
mod$add(LocallyConnected2D(filters = 2, kernel_size = c(2, 2)))
mod$add(Activation("relu"))
mod$add(MaxPooling2D(pool_size=c(2, 2)))
mod$add(Dropout(0.25))
mod$add(Flatten())
mod$add(Dropout(0.5))
mod$add(Dense(3, activation='softmax'))
keras_compile(mod, loss='categorical_crossentropy', optimizer=RMSprop())
keras_fit(mod, X_train, Y_train, verbose = 0)
}
Run the code above in your browser using DataLab