Usage
SimpleRNN(units, activation = "tanh", use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal", bias_initializer = "zeros",
kernel_regularizer = NULL, recurrent_regularizer = NULL,
bias_regularizer = NULL, activity_regularizer = NULL,
kernel_constraint = NULL, recurrent_constraint = NULL,
bias_constraint = NULL, dropout = 0, recurrent_dropout = 0,
input_shape = NULL)GRU(units, activation = "tanh", recurrent_activation = "hard_sigmoid",
use_bias = TRUE, kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal", bias_initializer = "zeros",
kernel_regularizer = NULL, recurrent_regularizer = NULL,
bias_regularizer = NULL, activity_regularizer = NULL,
kernel_constraint = NULL, recurrent_constraint = NULL,
bias_constraint = NULL, dropout = 0, recurrent_dropout = 0,
input_shape = NULL)
LSTM(units, activation = "tanh", recurrent_activation = "hard_sigmoid",
use_bias = TRUE, kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal", bias_initializer = "zeros",
unit_forget_bias = TRUE, kernel_regularizer = NULL,
recurrent_regularizer = NULL, bias_regularizer = NULL,
activity_regularizer = NULL, kernel_constraint = NULL,
recurrent_constraint = NULL, bias_constraint = NULL, dropout = 0,
recurrent_dropout = 0, return_sequences = FALSE, input_shape = NULL)