
Last chance! 50% off unlimited learning
Sale ends in
onlearn
initialization function.## S3 method for class 'numeric':
inlearn(d, kernel = "rbfdot", kpar = list(sigma = 0.1), type = "novelty",
buffersize = 1000)
sigma
inverse kernel width for the Radial Bclassification
, regression
, novelty
S4
object of class onlearn
that
can be used by the onlearn
function.inlearn
is used to initialize a blank onlearn
object.onlearn
, onlearn-class
## create toy data set
x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2))
y <- matrix(c(rep(1,50),rep(-1,50)),,1)
## initialize onlearn object
on <- inlearn(2,kernel="rbfdot",kpar=list(sigma=0.2),type="classification")
## learn one data point at the time
for(i in sample(1:100,100))
on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1)
sign(predict(on,x))
Run the code above in your browser using DataLab