## S3 method for class 'formula':
kkmeans(x, data = NULL, na.action = na.omit, ...)## S3 method for class 'matrix':
kkmeans(x, centers, kernel = "rbfdot", kpar = list(sigma = 0.1),alg="kkmeans", p=1, na.action = na.omit, ...)
## S3 method for class 'kernelMatrix':
kkmeans(x, centers, ...)
## S3 method for class 'list':
kkmeans(x, centers, kernel = "stringdot", kpar = list(length=4, lambda=0.5), alg ="kkmeans", p = 1, na.action = na.omit, ...)
kernelMatrix, or a list of character vectors.link{kernels}). kernlab"automatic" uses a heuristic the determine a
suitable value for the width parameter of the RBF kernel.
A list can also be used contaikkmeans and kerninghan.specc wich extends the class vector
containing integers indicating the cluster to which
each point is allocated. The following slots contain useful informationkkmeans function in a matrix or a
data.frame, in addition kkmeans also supports input in the form of a
kernel matrix of class kernelMatrix or as a list of character
vectors where a string kernel has to be used.specc, kpca, kcca## Cluster the iris data set.
data(iris)
sc <- kkmeans(as.matrix(iris[,-5]), centers=3)
sc
centers(sc)
size(sc)
withinss(sc)Run the code above in your browser using DataLab