rvm function currently supports only regression.## S3 method for class 'formula':
rvm(x, data=NULL, ..., subset, na.action = na.omit)## S3 method for class 'vector':
rvm(x, ...)
## S3 method for class 'matrix':
rvm(x, y, type="regression", kernel="rbfdot", kpar="automatic",
alpha= ncol(as.matrix(x)), var=0.1, var.fix=FALSE, iterations=100, verbosity=0, tol=
.Machine$double.eps,minmaxdiff = 1e-3, cross = 0, fit =TRUE,... , subset,
na.action = na.omit)
## S3 method for class 'list':
rvm(x, y, type = "regression", kernel = "stringdot", kpar = list(length = 4, lambda = 0.5),
alpha = 5, var = 0.1, var.fix = FALSE, iterations = 100, verbosity = 0,
tol = .Machine$double.eps, minmaxdiff = 1e-3, cross = 0, fit =TRUE,
... ,subset ,na.action = na.omit)
kernelMatrix of the training data
or a list of character vectors (for usex. Can be either
a factor (for classification tasks) or a numeric vector (for
regression).rvm can only be used for regression at the moment.
sigmainverse kernel width for the Radial NAs are
found. The default action is na.omit, which leads to rejection of cases
with missing values on any required variable. An alternative
is na.fail<fit = TRUE)ksvm# create data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.05)
# train relevance vector machine
foo <- rvm(x, y)
foo
# print relevance vectors
alpha(foo)
RVindex(foo)
# predict and plot
ytest <- predict(foo, x)
plot(x, y, type ="l")
lines(x, ytest, col="red")Run the code above in your browser using DataLab