# inlearn

0th

Percentile

##### Onlearn object initialization

Online Kernel Algorithm object onlearn initialization function.

Keywords
regression, ts, classif, neural
##### Usage
# S4 method for numeric
inlearn(d, kernel = "rbfdot", kpar = list(sigma = 0.1),
type = "novelty", buffersize = 1000)
##### Arguments
d

the dimensionality of the data to be learned

kernel

the kernel function used in training and predicting. This parameter can be set to any function, of class kernel, which computes a dot product between two vector arguments. kernlab provides the most popular kernel functions which can be used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function "Gaussian"

• polydot Polynomial kernel function

• vanilladot Linear kernel function

• tanhdot Hyperbolic tangent kernel function

• laplacedot Laplacian kernel function

• besseldot Bessel kernel function

• anovadot ANOVA RBF kernel function

The kernel parameter can also be set to a user defined function of class kernel by passing the function name as an argument.

kpar

the list of hyper-parameters (kernel parameters). This is a list which contains the parameters to be used with the kernel function. For valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot" and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"

• scale, offset for the Hyperbolic tangent kernel function "tanhdot"

• sigma, order, degree for the Bessel kernel "besseldot".

• sigma, degree for the ANOVA kernel "anovadot".

Hyper-parameters for user defined kernels can be passed through the kpar parameter as well.

type

the type of problem to be learned by the online algorithm : classification, regression, novelty

buffersize

the size of the buffer to be used

##### Details

The inlearn is used to initialize a blank onlearn object.

##### Value

The function returns an S4 object of class onlearn that can be used by the onlearn function.

onlearn, onlearn-class

##### Aliases
• inlearn
• inlearn,numeric-method
##### Examples
# NOT RUN {
## create toy data set
x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2))
y <- matrix(c(rep(1,50),rep(-1,50)),,1)

## initialize onlearn object
on <- inlearn(2, kernel = "rbfdot", kpar = list(sigma = 0.2),
type = "classification")

## learn one data point at the time
for(i in sample(1:100,100))
on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1)

sign(predict(on,x))

# }

Documentation reproduced from package kernlab, version 0.9-27, License:

### Community examples

Looks like there are no examples yet.