The Gaussian Processes object
Objects can be created by calls of the form new("lssvm", ...).
or by calling the lssvm function
kernelf:Object of class "kfunction" contains
the kernel function used
kpar:Object of class "list" contains the
kernel parameter used
param:Object of class "list" contains the
regularization parameter used.
kcall:Object of class "call" contains the used
function call
type:Object of class "character" contains
type of problem
coef:Object of class "ANY" contains
the model parameter
terms:Object of class "ANY" contains the
terms representation of the symbolic model used (when using a formula)
xmatrix:Object of class "matrix" containing
the data matrix used
ymatrix:Object of class "output" containing the
response matrix
fitted:Object of class "output" containing the
fitted values
b:Object of class "numeric" containing the
offset
lev:Object of class "vector" containing the
levels of the response (in case of classification)
scaling:Object of class "ANY" containing the
scaling information performed on the data
nclass:Object of class "numeric" containing
the number of classes (in case of classification)
alpha:Object of class "listI" containing the
computes alpha values
alphaindexObject of class "list" containing
the indexes for the alphas in various classes (in multi-class problems).
error:Object of class "numeric" containing the
training error
cross:Object of class "numeric" containing the
cross validation error
n.action:Object of class "ANY" containing the
action performed in NA
nSV:Object of class "numeric" containing the
number of model parameters
signature(object = "lssvm"): returns the alpha
vector
signature(object = "lssvm"): returns the cross
validation error
signature(object = "lssvm"): returns the
training error
signature(object = "vm"): returns the fitted values
signature(object = "lssvm"): returns the call performed
signature(object = "lssvm"): returns the
kernel function used
signature(object = "lssvm"): returns the kernel
parameter used
signature(object = "lssvm"): returns the regularization
parameter used
signature(object = "lssvm"): returns the
response levels (in classification)
signature(object = "lssvm"): returns the type
of problem
signature(object = "ksvm"): returns the
scaling values
signature(object = "lssvm"): returns the
data matrix used
signature(object = "lssvm"): returns the
response matrix used
Alexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
lssvm,
ksvm-class
# train model
data(iris)
test <- lssvm(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)
Run the code above in your browser using DataLab