
Last chance! 50% off unlimited learning
Sale ends in
rvm
function currently supports only regression.## S3 method for class 'formula':
rvm(x, data=NULL, ..., subset, na.action = na.omit)## S3 method for class 'vector':
rvm(x, ...)
## S3 method for class 'matrix':
rvm(x, y, type="regression", kernel="rbfdot", kpar="automatic",
alpha= ncol(as.matrix(x)), var=0.1, var.fix=FALSE, iterations=100, verbosity=0, tol=
.Machine$double.eps,minmaxdiff = 1e-3, cross = 0, fit =TRUE,... , subset,
na.action = na.omit)
## S3 method for class 'list':
rvm(x, y, type = "regression", kernel = "stringdot", kpar = list(length = 4, lambda = 0.5),
alpha = 5, var = 0.1, var.fix = FALSE, iterations = 100, verbosity = 0,
tol = .Machine$double.eps, minmaxdiff = 1e-3, cross = 0, fit =TRUE,
... ,subset ,na.action = na.omit)
kernelMatrix
of the training data
or a list of character vectors (for use wx
. Can be either
a factor (for classification tasks) or a numeric vector (for
regression).rvm
can only be used for regression at the moment.
sigma
inverse kernel width for the Radial NA
s are
found. The default action is na.omit
, which leads to rejection of cases
with missing values on any required variable. An alternative
is na.fail<
fit = TRUE
)ksvm
# train relevance vector machine foo <- rvm(x, y) foo # print relevance vectors alpha(foo) RVindex(foo)
# predict and plot
ytest <- predict(foo, x)
plot(x, y, type ="l")
lines(x, ytest, col="red")