powered by
`Laplace()` computes the laplacian kernel between all possible pairs of rows of a matrix or data.frame with dimension NxD.
Laplace(X, g = NULL)
Kernel matrix (dimension: NxN).
Matrix or data.frame that contains real numbers ("integer", "float" or "double").
Gamma hyperparameter. If g=0 or NULL, `Laplace()` returns the Manhattan distance (L1 norm between two vectors). (Defaults=NULL)
Let \(x_i,x_j\) be two real vectors. Then, the laplacian kernel is defined as: $$K_{Lapl}(x_i,x_j)=\exp(-\gamma \|x_i - x_j \|_1)$$
dat <- matrix(rnorm(250),ncol=50,nrow=5) Laplace(dat,g=0.1)
Run the code above in your browser using DataLab