Predict topic proportions for the covariate keyATM
# S3 method for keyATM_output
predict(
object,
newdata,
transform = FALSE,
burn_in = NULL,
parallel = TRUE,
posterior_mean = TRUE,
ci = 0.9,
method = c("hdi", "eti"),
point = c("mean", "median"),
label = NULL,
raw_values = FALSE,
...
)
the keyATM_output object for the covariate model.
New observations which should be predicted.
Transorm and standardize the newdata
with the same formula and option as model_settings
used in keyATM()
.
integer. Burn-in period. If not specified, it is the half of samples. Default is NULL
.
logical. If TRUE
, parallelization for speeding up. Default is TRUE
. Please plan()
before use this function.
logical. If TRUE
, the quantity of interest to estimate is the posterior mean. Default is TRUE
.
value of the credible interval (between 0 and 1) to be estimated. Default is 0.9
(90%).
method for computing the credible interval. The Highest Density Interval (hdi
, default) or Equal-tailed Interval (eti
).
method for computing the point estimate. mean
(default) or median
.
a character. Add a label
column to the output. The default is NULL
(do not add it).
a logical. Returns raw values. The default is FALSE
.
additional arguments not used.