Learn R Programming

kineticF (version 1.0)

kFquant: Quantile regression modelling of kinetic field data

Description

Fits quantile regression models to kinetic field data and displays predicted isopter values for selected quantiles. Used to generate normative/control isopter values.

Usage

kFquant(inf = NULL, is.octopus = FALSE, range.sex = NULL, range.age = NULL, range.qual = NULL, plot.iso = "III4e", show.raw = FALSE, tau = c(0.025, 0.25, 0.5, 0.75, 0.975))

Arguments

inf
character, name of the demographics matrix
is.octopus
logical, TRUE if Octopus perimeter data
range.sex
character, either NULL (use all data) or "Male" or "Female"
range.age
numeric, either NULL (use all data) or single value or a vector of length 2 specifying a closed age range
range.qual
character, either NULL (use all data) or a single value from "Good witness", "Fair witness", "Poor witness"
plot.iso
character, "III4e", "I4e", or "I2e"
show.raw
logical, superimpose raw data points on grid? Default is FALSE.
tau
numeric, vector of quantiles to be fitted. Default is 5%, 25%, 50%, 75% and 95%.

Value

References

Geraci, M and Bottai, M. (2014) Linear quantile mixed models. Statistics and Computing, 24(3), 461-479. doi: 10.1007/s11222-013-9381-9.

Examples

Run this code

## This requires sufficient data to generate robust models

kf.sort()
kFquant(range.qual="Good witness", range.age= 8:400,
        plot.iso="III4e", show.raw=FALSE)

Run the code above in your browser using DataLab