# NOT RUN {
library(knockoff)
p=5 # number of predictors
sig_mag=100 # signal strength
n= 200 # sample size
rkernel="laplacian" # kernel choice
s=2 # sparsity, number of nonzero component functions
rk_scale=1 # scaling paramtere of kernel
rfn= 3 # number of random features
cv_folds=15 # folds of cross-validation in group lasso
X=matrix(rnorm(n*p),n,p)%*%chol(toeplitz(0.3^(0:(p-1)))) # generate design
X_k = create.second_order(X) # generate knockoff
reg_coef=c(rep(1,s),rep(0,p-s)) # regression coefficient
reg_coef=reg_coef*(2*(rnorm(p)>0)-1)*sig_mag
y=X%*% reg_coef + rnorm(n) # response
# the first half is variables of design X, and the latter is knockoffs X_k
rk_fit(X,y,X_k,rfn,cv_folds,rkernel,rk_scale)
# }
Run the code above in your browser using DataLab