Learn R Programming

⚠️There's a newer version (1.7-3) of this package.Take me there.

klaR (version 0.6-11)

Classification and visualization

Description

Miscellaneous functions for classification and visualization developed at the Fakultaet Statistik, Technische Universitaet Dortmund

Copy Link

Version

Install

install.packages('klaR')

Monthly Downloads

12,093

Version

0.6-11

License

GPL-2

Maintainer

Uwe Ligges

Last Published

June 10th, 2014

Functions in klaR (0.6-11)

distmirr

Internal function to convert a distance structure to a matrix
drawparti

Plotting the 2-d partitions of classification methods
betascale

Scale membership values according to a beta scaling
.dmvnorm

Density of a Multivariate Normal Distribution
predict.pvs

predict method for pvs objects
e.scal

Function to calculate e- or softmax scaled membership values
partimat

Plotting the 2-d partitions of classification methods
plineplot

Plotting marginal posterior class probabilities
NaiveBayes

Naive Bayes Classifier
quadplot

Plotting of 4 dimensional membership representation simplex
predict.rda

Regularized Discriminant Analysis (RDA)
predict.svmlight

Interface to SVMlight
classscatter

Classification scatterplot matrix
errormatrix

Tabulation of prediction errors by classes
EDAM

Computation of an Eight Direction Arranged Map
nm

Nearest Mean Classification
stepclass

Stepwise variable selection for classification
triperplines

Barycentric plots
countries

Socioeconomic data for the most populous countries.
predict.sknn

Simple k Nearest Neighbours Classification
trigrid

Barycentric plots
meclight.default

Minimal Error Classification
plot.NaiveBayes

Naive Bayes Plot
corclust

Function to identify groups of highly correlated variables for removing correlated features from the data for further analysis.
GermanCredit

Statlog German Credit
TopoS

Computation of criterion S of a visualization
calc.trans

Calculation of transition probabilities
plot.woe

Plot information values
B3

West German Business Cycles 1955-1994
predict.NaiveBayes

Naive Bayes Classifier
svmlight

Interface to SVMlight
sknn

Simple k nearest Neighbours
tritrafo

Barycentric plots
locpvs

Pairwise variable selection for classification in local models
centerlines

Lines from classborders to the center
triplot

Barycentric plots
loclda

Localized Linear Discriminant Analysis (LocLDA)
pvs

Pairwise variable selection for classification
ucpm

Uschi's classification performance measures
tripoints

Barycentric plots
woe

Weights of evidence
kmodes

K-Modes Clustering
dkernel

Estimate density of a given kernel
benchB3

Benchmarking on B3 data
triframe

Barycentric plots
friedman.data

Friedman's classification benchmark data
hmm.sop

Calculation of HMM Sum of Path
rerange

Linear transformation of data
predict.meclight

Prediction of Minimal Error Classification
b.scal

Calculation of beta scaling parameters
quadtrafo

Transforming of 4 dimensional values in a barycentric coordinate system.
shardsplot

Plotting Eight Direction Arranged Maps or Self-Organizing Maps
greedy.wilks

Stepwise forward variable selection for classification
predict.woe

Weights of evidence
rda

Regularized Discriminant Analysis (RDA)
predict.loclda

Localized Linear Discriminant Analysis (LocLDA)
predict.locpvs

predict method for locpvs objects