Calculates the e- or softmax scaled membership values of an argmax based classification rule.
e.scal(x, k = 1, tc = NULL)
matrix of membership values
parameter for e-scaling (1 for softmax)
vector of true classes (required if k
has to be optimized)
A list containing elements
Scaled values
Optimal k
For any membership vector y k=1
, the classical softmax scaling is used. If the true classes are given, k
is optimized
so that the apparent error rate is minimized.
Garczarek, Ursula Maria (2002): Classification rules in standardized partition spaces. Dissertation, University of Dortmund. URL http://hdl.handle.net/2003/2789
# NOT RUN {
library(MASS)
data(iris)
ldaobj <- lda(Species ~ ., data = iris)
ldapred <- predict(ldaobj)$posterior
e.scal(ldapred)
e.scal(ldapred, tc = iris$Species)
# }
Run the code above in your browser using DataLab