Learn R Programming

⚠️There's a newer version (1.7-3) of this package.Take me there.

klaR (version 0.6-2)

Classification and visualization

Description

Miscellaneous functions for classification and visualization developed at the Fakultaet Statistik, Technische Universitaet Dortmund

Copy Link

Version

Install

install.packages('klaR')

Monthly Downloads

12,565

Version

0.6-2

License

GPL-2

Maintainer

Uwe Ligges

Last Published

December 6th, 2009

Functions in klaR (0.6-2)

predict.rda

Regularized Discriminant Analysis (RDA)
.dmvnorm

Density of a Multivariate Normal Distribution
predict.svmlight

Interface to SVMlight
partimat

Plotting the 2-d partitions of classification methods
countries

Socioeconomic data for the most populous countries.
locpvs

Pairwise variable selection for classification in local models
drawparti

Plotting the 2-d partitions of classification methods
errormatrix

Tabulation of prediction errors by classes
corclust

Function to identify groups of highly correlated variables for removing correlated features from the data for further analysis.
predict.sknn

Simple k Nearest Neighbours Classification
hmm.sop

Calculation of HMM Sum of Path
sknn

Simple k nearest Neighbours
tripoints

Barycentric plots
pvs

Pairwise variable selection for classification
greedy.wilks

Stepwise forward variable selection for classification
shardsplot

Plotting Eight Direction Arranged Maps or Self-Organizing Maps
centerlines

Lines from classborders to the center
B3

West German Business Cycles 1955-1994
benchB3

Benchmarking on B3 data
predict.locpvs

predict method for locpvs objects
EDAM

Computation of an Eight Direction Arranged Map
classscatter

Classification scatterplot matrix
predict.NaiveBayes

Naive Bayes Classifier
trigrid

Barycentric plots
plot.NaiveBayes

Naive Bayes Plot
calc.trans

Calculation of transition probabilities
dkernel

Estimate density of a given kernel
e.scal

Function to calculate e- or softmax scaled membership values
betascale

Scale membership values according to a beta scaling
predict.pvs

predict method for pvs objects
friedman.data

Friedman's classification benchmark data
distmirr

Internal function to convert a distance structure to a matrix
rerange

Linear transformation of data
quadplot

Plotting of 4 dimensional membership representation simplex
TopoS

Computation of criterion S of a visualization
loclda

Localized Linear Discriminant Analysis (LocLDA)
plineplot

Plotting marginal posterior class probabilities
nm

Nearest Mean Classification
triperplines

Barycentric plots
ucpm

Uschi's classification performance measures
quadtrafo

Transforming of 4 dimensional values in a barycentric coordinate system.
NaiveBayes

Naive Bayes Classifier
triframe

Barycentric plots
triplot

Barycentric plots
predict.loclda

Localized Linear Discriminant Analysis (LocLDA)
meclight.default

Minimal Error Classification
b.scal

Calculation of beta scaling parameters
kmodes

K-Modes Clustering
tritrafo

Barycentric plots
predict.meclight

Prediction of Minimal Error Classification
svmlight

Interface to SVMlight
rda

Regularized Discriminant Analysis (RDA)
stepclass

Stepwise variable selection for classification