Learn R Programming

⚠️There's a newer version (1.7-3) of this package.Take me there.

klaR (version 0.6-9)

Classification and visualization

Description

Miscellaneous functions for classification and visualization developed at the Fakultaet Statistik, Technische Universitaet Dortmund

Copy Link

Version

Install

install.packages('klaR')

Monthly Downloads

12,565

Version

0.6-9

License

GPL-2

Maintainer

Uwe Ligges

Last Published

July 21st, 2013

Functions in klaR (0.6-9)

betascale

Scale membership values according to a beta scaling
predict.loclda

Localized Linear Discriminant Analysis (LocLDA)
EDAM

Computation of an Eight Direction Arranged Map
greedy.wilks

Stepwise forward variable selection for classification
errormatrix

Tabulation of prediction errors by classes
partimat

Plotting the 2-d partitions of classification methods
b.scal

Calculation of beta scaling parameters
plot.NaiveBayes

Naive Bayes Plot
kmodes

K-Modes Clustering
hmm.sop

Calculation of HMM Sum of Path
locpvs

Pairwise variable selection for classification in local models
ucpm

Uschi's classification performance measures
quadplot

Plotting of 4 dimensional membership representation simplex
tritrafo

Barycentric plots
stepclass

Stepwise variable selection for classification
triplot

Barycentric plots
predict.rda

Regularized Discriminant Analysis (RDA)
quadtrafo

Transforming of 4 dimensional values in a barycentric coordinate system.
classscatter

Classification scatterplot matrix
corclust

Function to identify groups of highly correlated variables for removing correlated features from the data for further analysis.
tripoints

Barycentric plots
B3

West German Business Cycles 1955-1994
benchB3

Benchmarking on B3 data
loclda

Localized Linear Discriminant Analysis (LocLDA)
sknn

Simple k nearest Neighbours
e.scal

Function to calculate e- or softmax scaled membership values
TopoS

Computation of criterion S of a visualization
predict.pvs

predict method for pvs objects
triframe

Barycentric plots
predict.woe

Weights of evidence
NaiveBayes

Naive Bayes Classifier
countries

Socioeconomic data for the most populous countries.
drawparti

Plotting the 2-d partitions of classification methods
shardsplot

Plotting Eight Direction Arranged Maps or Self-Organizing Maps
predict.NaiveBayes

Naive Bayes Classifier
friedman.data

Friedman's classification benchmark data
nm

Nearest Mean Classification
predict.meclight

Prediction of Minimal Error Classification
trigrid

Barycentric plots
plot.woe

Plot information values
predict.locpvs

predict method for locpvs objects
pvs

Pairwise variable selection for classification
triperplines

Barycentric plots
centerlines

Lines from classborders to the center
calc.trans

Calculation of transition probabilities
meclight.default

Minimal Error Classification
plineplot

Plotting marginal posterior class probabilities
rda

Regularized Discriminant Analysis (RDA)
predict.svmlight

Interface to SVMlight
distmirr

Internal function to convert a distance structure to a matrix
predict.sknn

Simple k Nearest Neighbours Classification
woe

Weights of evidence
rerange

Linear transformation of data
.dmvnorm

Density of a Multivariate Normal Distribution
dkernel

Estimate density of a given kernel
svmlight

Interface to SVMlight