# NOT RUN {
if(requireNamespace("Rmosek", quietly = TRUE) &&
(!is.null(utils::packageDescription("Rmosek")$Configured.MSK_VERSION))){
# Intialise 100 x 100 x 3 array containing M kernel matrices
# representing three different types of similarities between 100 data points
km <- array(NA, c(100, 100, 3))
# Load kernel matrices
km[,,1] <- as.matrix(read.csv(system.file('extdata',
'kernel_matrix1.csv', package = 'klic'), row.names = 1))
km[,,2] <- as.matrix(read.csv(system.file('extdata',
'kernel_matrix2.csv', package = 'klic'), row.names = 1))
km[,,3] <- as.matrix(read.csv(system.file('extdata',
'kernel_matrix3.csv', package = 'klic'), row.names = 1))
# Introduce some missing data
km[76:80, , 1] <- NA
km[, 76:80, 1] <- NA
# Define missingness indicators
missing <- matrix(FALSE, 100, 3)
missing[76:80,1] <- TRUE
# Initalize the parameters of the algorithm
parameters <- list()
# Set the number of clusters
parameters$cluster_count <- 4
# Set the number of iterations
parameters$iteration_count <- 10
# Perform training
state <- lmkkmeans_missingData(km, parameters, missing)
# Display the clustering
print(state$clustering)
# Display the kernel weights
print(state$Theta)
}
# }
Run the code above in your browser using DataLab