plotAllCriterion: ~ Function: plotAllCriterion ~
Description
This function graphically displays three quality criterions for each
possible cluster number.ll the
Clusterization
of a ClusterizLongData
object.Usage
plotAllCriterion(x,method="linearInterpolation")
Arguments
x
[ClusterizLongData]: object whose quality criterion should be
displayed.
method
[character]: imputation methode that should be used in
case of missing values. See
imputation
for detail. Value
- No value are return. A graph is printed.
Author(s)
Christophe Genolini
PSIGIAM: Paris Sud Innovation Group in Adolescent Mental Health
INSERM U669 / Maison de Solenn / Paris
Contact author : genolini@u-paris10.frEnglish translation
Rapha�l Ricaud
Laboratoire "Sport & Culture" / "Sports & Culture" Laboratory
University of Paris 10 / NanterreDetails
This function display graphically three quality criterion (probably to
decide the best clusters' number). The three criterions are Calinski &
Harabatz, Ray & Turi and Davies & Bouldin.
It displays only the best result for each clusters number : this helps to
find the local maximum, which is classically used to chose the
"correct" clusters' number.References
Article "KmL: K-means for Longitudinal Data", in
Computational Statistics (accepted on 11-11-2009)
Web site: http://christophe.genolini.free.fr/kmlExamples
Run this code#################
### Data generation
dn <- as.cld(gald())
### Trying several clusters number and several starting condition
kml(dn)
### Display the quality criterion, both way :
plotAllCriterion(dn)
Run the code above in your browser using DataLab