par(ask=TRUE)
###################
### Constrution of some longitudinal data
myCld <- gald()
plot(myCld)
###################
### partition using randamAll
pa1a <- partitionInitialise(3,lengthPart=150,method="randomAll")
plot(myCld,pa1a)
pa1b <- partitionInitialise(3,lengthPart=150,method="randomAll")
plot(myCld,pa1b)
###################
### partition using randamAll
pa2a <- partitionInitialise(3,lengthPart=150,method="randomK")
plot(myCld,pa2a)
pa2b <- partitionInitialise(3,lengthPart=150,method="randomK")
plot(myCld,pa2b)
###################
### partition using maxDist
pa3 <- partitionInitialise(3,lengthPart=150,method="maxDist",
matrixDist=matDist3d(myCld["traj"]))
plot(myCld,pa3)
## maxDist is deterministic, so no need for a second example
###################
### Example to illustrate "maxDist" method on classical clusters
point <- matrix(c(0,0, 0,1, -1,0, 0,-1, 1,0),5,byrow=TRUE)
points <- rbind(point,t(t(point)+c(10,0)),t(t(point)+c(5,6)))
points <- rbind(points,t(t(points)+c(30,0)),t(t(points)+c(15,20)),t(-t(point)+c(20,10)))
plot(points,main="Some points")
paInit <- partitionInitialise(2,nrow(points),as.matrix(dist(points)),method="maxDist")
plot(points,main="Two farest points")
lines(points[!is.na(paInit["clusters"]),],col=2,type="p",lwd=3)
paInit <- partitionInitialise(3,nrow(points),as.matrix(dist(points)),method="maxDist")
plot(points,main="Three farest points")
lines(points[!is.na(paInit["clusters"]),],col=2,type="p",lwd=3)
paInit <- partitionInitialise(4,nrow(points),as.matrix(dist(points)),method="maxDist")
plot(points, main="Four farest points")
lines(points[!is.na(paInit["clusters"]),],col=2,type="p",lwd=3)
par(ask=FALSE)
Run the code above in your browser using DataLab