scale
normalized the trajectories of the different variable of a
LongData
object.scale(x, center = TRUE, scale = TRUE)
[LongData]
: Object containnig trajectories to be scale.[logical]
or [vector(numeric)]
: Value that
will be substract from each mesurement of a variable. If center=TRUE
, the mean of
each variable is used. Otherwise, center
should have a value
fo[logical]
or [vector(numeric)]
: Value that
will divided, after the substration, each mesurement of a variable.
If scale=TRUE
, the standard deviation of
each variable is used. Otherwise, scale
scale
directly
modify the internal value of the LongData
. In this
case, no value is return.scale
normalized each variable of a
LongData
.
More precisely, all the value x[i,j,k] of the variable k will be scale
according to the classic formula (x[i,j,k]- m_k)/s_k
where
m_k and s_k are respectively the k-ieme value of the argument
center
and scale
.
Note that center=TRUE
is a special value that set m_k=mean(x[,,k])
.
Similarly, scale=TRUE
is a special value that set s_k=sd(x[,,k])
.##################
### Building LongData
time=c(1,2,3,4,8,12,16,20)
id2=1:12
f <- function(id,t)((id-1)%%3-1) * t
g <- function(id,t)(id%%2+1)*t
ld1 <- as.longData(array(cbind(outer(id2,time,f),outer(id2,time,g))+rnorm(12*8*2,0,3),dim=c(12,8,2)))
### Scaling
plot(ld1)
scale(ld1)
### Only the y-axe change...
plot(ld1)
Run the code above in your browser using DataLab