# NOT RUN {
#Examine Data
summary(ContrivedData)
#Initial OLS Model
contrived.ols<-lm(y~x.1+x.2,data=ContrivedData);summary(contrived.ols)
#Define Covariate Matrix
covariates<-cbind(1,ContrivedData$x.1,ContrivedData$x.2)
#set seed
set.seed(1241060320)
#For simple illustration, we set to few iterations.
#In this case, a 10,000-iteration run converges to the true parameters.
#If you have considerable time and hardware, delete the # on the next line.
#10,000 iterations took 39 min. with 8 GB RAM & a 1.5 GHz Quad-Core processor.
M<-8
#M<-10000
#Run the Full Model
contrived.run<-metropolis.krige(y=ContrivedData$y,X=covariates,range.tol=0.05,
east=ContrivedData$s.1,north=ContrivedData$s.2,mcmc.samples=M)
#Delete 20% for Burn-In
contrived.run<-contrived.run[(ceiling(0.2*M)+1):M,]
#examine results against true coefficients
TRUTH<-c(0.5,2.5,0.5,0,1,2)
rbind(apply(contrived.run,2,quantile,c(.5,.05,.95)),TRUTH)
#Convergence Diagnostic: Geweke
#Note that the second (commented) version of Geweke is more typical
#of a 10,000 iteration run.
geweke(contrived.run,early.prop=0.5)
#geweke(contrived.run)
# }
Run the code above in your browser using DataLab